nextwork.org

APIs with Lambda
+ APl Gateway

G)vec B w8 Amazon Qausiness 8 1AM ety Center [Ar 8 Key Management Service 88| CloudFormation 8] GuardDuty

UserRequestAPI (5871

Method details
Method type

GET
Integration type

O Lambda function
grate your APl with

Send the

(D Lambda proxy integr:
requ

st to your Lambda function as a structure

© Grant AP Gateway permi

on to invoke your Lambda functi
1 sove s chanaes. APL Gatew

rpy

() Cloudshell _Feedback

@ coucrons | >

® ©

8 Secres Manager @8] Cloudrail 8] lovawatch [Simple Notification Service

Privacy _ Terms _Cookie preferences

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

Introducing Today's Project!

In this project, | will demonstrate how to set up an APl using AWS Lambda and
Amazon API Gateway. The goal is to deepen my understanding of how APIs work and
to implement a scalable, serverless logic tier as part of a three-tier architecture. This
project will focus on creating a clean, efficient API layer that connects the presentation
layer (frontend) to the data tier (backend services), using AWS tools to ensure
performance, reliability, and cost-effectiveness.

Tools and concepts

Services | used were Amazon API Gateway, AWS Lambda, and Amazon DynamoDB.
Key concepts | learnt include Lambda functions as the logic layer for handling
backend operations, APl Gateway for exposing those functions to the web . | also
gained hands-on experience with APl methods, resource structuring, permission
roles, deployment stages, and writing clear documentation to support API usability.

Project reflection

his project took me approximately 2 hours to complete, including setup, testing, and
writing documentation. The most challenging part was configuring the correct IAM
permissions to allow the Lambda function to access DynamoDB without triggering
authorization errors. It was most rewarding to see the full flow work—from a user
making a request in the browser to the Lambda function processing it and returning a
response through APl Gateway—because it demonstrated how serverless
components can be combined to build a functional and scalable backend

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

| did this project today to deepen my understanding of how serverless architecture
works—specifically how AWS Lambda, API Gateway, and DynamoDB interact to build
scalable APIs without managing traditional servers. Yes, this project met my goals. It
helped me understand how to set up API endpoints, handle permissions, connect
backend logic, and document the system properly. By the end, | had a working, real-
world example of a serverless API that | can build on for future projects.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

Lambda functions

AWS Lambda is a serverless compute service that lets you run code without
provisioning or managing servers. I'm using Lambda in this project to handle the core
logic of the application — specifically, to fetch data from the database and return it to
the user through the API. This makes Lambda the “brains” of our system, enabling a
clean, scalable, and event-driven logic tier within our three-tier architecture.

The code | added to my Lambda function will grab a user ID from the triggered event
— typically submitted through a form or input field on a website. It then queries
DynamoDB for a matching record based on that user ID. The function also includes
error handling to ensure the system responds appropriately if the data isn't found or if
something goes wrong during executio

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

Info Tutorials

with a test event, choose "Test".

EXPLORER o < . Learn

cases in AWS Lambda.
Q RETRIEVEUSERDATA
15 indexmjs

{ DynamoDBClient } From Create asimplewebapp A
{ DynamoDBDocumentClient, GetCommand }
In this tutorial you will learn hoy
ent = new DynamoDBClient({ region: 'us to
ynamoDBDocumentClient. from(ddbClient) ; « Build a simple web api
consisting of a Lambda
handler(event) function with a function
URL that outputs a
webpage
« Invoke your function
through its function URL

event . queryStringParaneters. userTd;|

n more [2
DEPLOY [UNDEPLOYED CHANGES]

etCommand (parans) ;
A You have undeployed chan

(start tutorial

onmand) ;

Deploy (Ctrl+Shift+U)

Test (Ctrl+Shift+1)

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

API| Gateway

APIs are interfaces that allow different software systems to communicate with each
other by sending and receiving data. There are different types of APIs, like REST,
SOAP, GraphQL, and WebSocket APIs—each with its own structure and use cases. My
APl is a REST API, which uses standard HTTP methods like GET and POST to handle
requests. It's designed to receive input from a user's browser, pass that datato a
Lambda function for processing, and return a response—making it ideal for building
scalable, serverless web applications.

Amazon API Gateway is a fully managed service that makes it easy to create, publish,
and manage APIs at any scale. I'm using API Gateway in this project to act as the
interface between the user's browser and the backend Lambda function. It receives
HTTP requests from the client, forwards them to the Lambda function for processing,
and then returns the function's response back to the user. This setup allows me to
securely expose my Lambda logic to the web while maintaining control over routing,
access, and data formats.

When a user makes a request—such as submitting a form or clicking a button on a
website—API Gateway receives that HTTP request and routes it to the appropriate
AWS Lambda function. The Lambda function then executes the backend logic, such
as fetching data from a database, processing input, or performing calculations. Once
the function finishes executing, it returns a response to API Gateway, which then
sends that response back to the user’s browser. This seamless connection allows for
serverless, scalable web applications without the need to manage traditional servers.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

8 @ @ | Unitedstates (. Vigii
@ 1AM identity Center [@] AmazonQ 8] 53 88 ey Management Service 89| CloudFormation @] GuardDuty il Secrets Manager] CloudTrail & Cloudwatch @] Simple Notification Service @) CloudFront

API Gateway @ Successfully created REST AP 'UserRequestAPI (s8713mg89i

A
Custom domain names Resources

Domain name access
VPC links S Resource details (update documentation)
Path Resource ID

API: UserRequestAP T | /f ilnaf6knai

Stages

Methods (| te method)

Authorizers
ateway responses Method type Integration type Authorization APl key

Models

No methods

Resource policy

Documentation

hb

No methods defined.

APl settings

Usage plans
APl key

Client certificates

Cloudshell Feedback e vices, Inc.or Privay Tems Cookie preferences

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

APl Resources and Methods

An APl is made up of resources, which represent specific paths or endpoints that
define what actions the API can perform. Each resource typically corresponds to a
particular part of your application, such as ‘/users’, /products’, or ‘/orders’.
Resources help organize and structure the API by grouping related operations under a
common path. For example, a ‘/users’ resource might support different HTTP
methods like GET to fetch user data or POST to create a new user. This makes the API
easier to understand, manage, and scale.

Each resource consists of methods, which are the specific HTTP operations—like
GET, POST, PUT, or DELETE—that define what actions can be performed on that
resource. Methods determine how the API should handle incoming requests and what
type of response to return. For example, a GET method on the “/users’ resource might
fetch user data, while a POST method could create a new user entry. By setting up
methods, we control the logic, permissions, and backend integrations (like linking to a
Lambda function) that power each API operation.

| created a GET method that connects API Gateway with a Lambda function. This
means that when a user makes a request to our API—for example, "api.com/users’ —
and it's a GET request, APl Gateway knows to forward that request to the Lambda
function. The Lambda function will then process the event, such as fetching user data,
and return a response. This setup allows our API to respond dynamically based on the
type of request received.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob

NextWork Student nextwork.org

8 Key Management Service @8] CloudFormation] GuardDuty [l Secrets Manager @) CloudTrail 8] CloudWatch @] Simple Notiication Service @] Cloudront | D)

G vec [[G] Amacon QBusiness [1M identity Center [Amazon@ 18] 53
® 6

“rcale meuva

Method details
Method type

GET

Integration type

© Lambda function
in r AP wit

AWS servi VPC link
Integr Integr ha er the publicin

Lambda proxy integration
Send the request to your Lambda function as a structured event.

Lambda function

ou can also provide an ARN from another accoun

Q am:awslambda:y

@ Grant API Gateway permission to invoke your Lambda fun
When vnit save var chanaes. API Gateway tindates unur | amhea fiunction's resoirce-hased nalicv tn allow this AP fr
, Amazon Web Services, Inc.orits affliates. Privacy Terms _Cookie preferences

Cloudshell _ Feedback

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

API| Deployment

When you deploy an API, you deploy it to a specific stage. A stage is a shapshot of
your API at a specified time, representing a version that's ready to be accessed by
users. | deployed to the ‘prod’ stage, which is where the live version of the API resides
—this is the version that real users interact with. Deploying to ‘prod’ means the APl is
stable, tested, and publicly accessible via a URL endpoint.

To visit my API, | visited the invoke URL provided by API Gateway after deployment.
The API displayed an error because it is connected to a Lambda function that doesn't
have the necessary permissions to access DynamoDB. This lack of permissions can
trigger an authentication or authorization issue, preventing the Lambda function from
querying the database and returning a proper response. To fix this, | need to update
the Lambda function’s execution role to include the required DynamoDB access
policies.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

Deploy API X

Create or select a stage where your APl will be deployed. You can use the deployment
history to revert or change the active deployment for a stage. Learn more [3

Stage

New stage

Stage name

I_ prod|

(D A new stage will be created with the default settings. Edit your stage
settings on the Stage page.

Deployment description

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

APl Documentation

For my project's extension, | am writing APl documentation because it helps others
(and my future self) understand how to use the API, what each endpoint does, what
data it expects, and what responses it returns. You can do this in various ways, such
as creating a markdown file, using Swagger (OpenAPI), Postman documentation, or
integrating tools like APl Gateway's built-in documentation feature. Clear
documentation ensures the APl is easier to adopt, debug, and maintain over time.

Once | prepared my documentation, | can publish it to a specific stage in Amazon API
Gateway, such as ‘dev’, ‘test’, or ‘prod’. You have to publish your API to a specific
stage because each stage represents a versioned snapshot of your API, and only
deployed stages are accessible to users. Publishing documentation to a stage ensures
that developers can view accurate, stage-specific details—like available endpoints,
request formats, and expected responses—directly from the API's live environment.

My published and downloaded documentation showed me a clear overview of my
API's structure, including available resources, methods, request parameters, and
example responses. It confirmed that each endpoint was correctly configured and
helped identify any missing descriptions or inconsistencies. Having this
documentation makes it easier to share the API with other developers and ensures
that the implementation aligns with the intended design.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

{} UserRequestAPI-prod-swaggerjson X
{

2025-67-10T1
UserRequestAPT
"s8713mg89i .execute-api.us-east-1.amazonaws.com",

/prod
https"],

["application/json
r

200 response”,

#/definitions/Empty”

»
efinitions
"Empty
object”,
Empty Schema™

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

nextwork.org

The place to learn &
showcase your skills

Check out nextwork.org for more projects

https://community.nextwork.org/c/i-have-a-question?automatic_login=true
https://community.nextwork.org/c/i-have-a-question?automatic_login=true

