
nextwork.org

Fetch Data with
AWS Lambda

Chrispinus Jacob

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Chrispinus Jacob

NextWork Student nextwork.org

Introducing Today's Project!

In this project, I will demonstrate how to use AWS Lambda to retrieve data stored in

DynamoDB. I'm doing this project to learn how to set up the data tier of an application

using DynamoDB, and how to build the logic tier using Lambda functions. This will

help me understand how backend components interact in a serverless architecture

and how data flows from storage to the user through a Lambda-powered API.

Tools and concepts

Services I used were AWS Lambda, A , and Amazon DynamoDB. Key concepts I learnt

include Lambda functions as the logic layer for handling backend tasks, API Gateway

for connecting user requests to the function, and DynamoDB as a flexible NoSQL

database for storing and retrieving data. I also learnt how to manage IAM roles and

permissions to keep my application secure.

Project reflection

This project took me approximately 2 hours to complete. The most challenging part

was setting up the correct IAM permissions to allow the Lambda function to access

DynamoDB without triggering errors. It was most rewarding to see everything come

together—watching the Lambda function successfully retrieve data and return it

through the API, showing that the full serverless flow was working correctly.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Chrispinus Jacob

NextWork Student nextwork.org

I did this project today to strengthen my understanding of how serverless components

like AWS Lambda and DynamoDB work together to build modern web applications.

Yes, this project met my goals—it helped me learn how to structure the logic and data

tiers, manage permissions securely, and test end-to-end functionality. I now feel more

confident in building and deploying basic serverless APIs.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Chrispinus Jacob

NextWork Student nextwork.org

Project Setup

To set up my project, I created a database using DynamoDB. DynamoDB is a NoSQL

database that is highly flexible for both data storage and retrieval, making it ideal for

serverless applications. The partition key is `userId`, which means it's the key identifier

used to uniquely locate each item in the table. By using `userId` as the partition key, I

can efficiently fetch specific user data based on the ID submitted in an API request.

In my DynamoDB table, I added a piece of user data to help with testing. DynamoDB is

schemaless, which means it doesn't require a fixed structure for all items in the table.

Each item can have different fields, and I only need to define the key (like `userId`)

when creating the table. This makes it easy to store flexible and varied data.

AWS Lambda

AWS Lambda is a serverless compute service that lets you run code without

managing servers. I'm using Lambda in this project to write the logic that retrieves

data from DynamoDB.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Chrispinus Jacob

NextWork Student nextwork.org

When a user sends a request, the Lambda function will run automatically, look up the

correct item in the database using the user ID, and return that data. This makes

Lambda the main part of the logic tier in my app.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Chrispinus Jacob

NextWork Student nextwork.org

AWS Lambda Function

My Lambda function has an execution role, which is a set of permissions that tells

AWS what the function is allowed to do. By default, the role grants basic permissions

like writing logs to Amazon CloudWatch. However, to allow my function to read from

DynamoDB, I need to update the role and add specific permissions for accessing the

DynamoDB table. This ensures the function can securely retrieve the data it needs

during execution.

My Lambda function will retrieve data from a DynamoDB table. The first part of the

code focuses on getting the data by using the user ID to query the table and return the

matching item. The second part of the code handles sending a response back to the

user—either returning the found data or an error message if something went wrong.

The code uses AWS SDK, which is a collection of tools that allow developers to

interact with AWS services through code. My code uses the SDK to connect to

DynamoDB, send a request to get data using the user ID, and receive the result. This

makes it easy for the Lambda function to communicate with DynamoDB without

needing to write low-level HTTP requests.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Chrispinus Jacob

NextWork Student nextwork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Chrispinus Jacob

NextWork Student nextwork.org

Function Testing

To test whether my Lambda function works, I ran a test using the Test tab in the

Lambda console. The test is written in JSON and includes a sample event, such as a

user ID that the function should use to look up data in DynamoDB. If the test is

successful, I'd see the correct piece of user data returned in JSON format. However, if

the function doesn’t have permission to access the DynamoDB table, the test will

return an error message indicating a permissions issue.

The test displayed a 'success' because the Lambda function ran without crashing and

returned a response. But the function's response was actually an error because the

Lambda execution role didn’t have the correct permissions to access the DynamoDB

table. This means the function was able to execute, but it couldn't retrieve the data,

resulting in an error message in the output instead of the expected user information.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Chrispinus Jacob

NextWork Student nextwork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Chrispinus Jacob

NextWork Student nextwork.org

Function Permissions

To resolve the AccessDenied error, I updated the Lambda function's execution role to

include read-only permissions for DynamoDB, because without these permissions,

the function cannot access the table to retrieve data.

There were four DynamoDB permission policies I could choose from, but I didn't pick

AmazonDynamoDBFullAccess because it gives too many permissions, including write

and delete access, which I don’t need for this project. I only needed read-only access

to safely retrieve data without risking accidental changes to the database.

I also didn't pick AmazonDynamoDBFullAccess or

AmazonDynamoDBFullAccessWithDataPipeline because they allow full control over all

DynamoDB resources, which is more than what my Lambda function needs.

AmazonDynamoDBReadOnlyAccess was the right choice because it gives just

enough permission for the function to read data from the table—keeping the setup

secure and limited to only what's necessary.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Chrispinus Jacob

NextWork Student nextwork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Chrispinus Jacob

NextWork Student nextwork.org

Final Testing and Reflection

To validate my new permission settings, I retested the Lambda function using the

same test event as before. The results were successful because the updated

execution role now has the correct read-only access to DynamoDB, allowing the

function to retrieve and return the expected data.

Web apps are a popular use case of using Lambda and DynamoDB. For example, I

could build a user dashboard where Lambda functions handle login requests, retrieve

user data from DynamoDB, and display it on the page. This setup lets the app run

without managing servers, while still delivering fast, dynamic content to users.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Chrispinus Jacob

NextWork Student nextwork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Chrispinus Jacob

NextWork Student nextwork.org

Enahancing Security

For my project extension, I challenged myself to replace the permission policy we

granted our Lambda function recently. Instead of using the AWS user-managed policy,

I created a custom policy that ensures the function can only access specific user data

in DynamoDB. This will enhance DynamoDB security by following the principle of least

privilege—giving the function only the exact access it needs and nothing more.

To create the permission policy, I used the visual editor in IAM because it makes it

easier to select specific actions and resources without writing JSON manually. This

way, I could clearly choose only the read permissions needed for my DynamoDB

table, helping to keep the setup secure and easy to manage.

When updating a Lambda function's permission policies, you could risk removing

access the function needs to run properly—like losing permission to read from

DynamoDB. I validated that my Lambda function still works by running a test in the

Lambda console and checking that it returned the correct user data without any

access errors.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Chrispinus Jacob

NextWork Student nextwork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


nextwork.org

The place to learn &
showcase your skills
Check out nextwork.org for more projects

https://community.nextwork.org/c/i-have-a-question?automatic_login=true
https://community.nextwork.org/c/i-have-a-question?automatic_login=true

