nextwork.org

Threat Detection
with GuardDuty

Chrispinus Jacob

s Q se

(N. Virginia

B @vec B am @) Amazon QBusiness [1AM identity B Amazon @ s3 Key Management Service B8] CloudFormation {8 GuardDuty

GuardDuty X iardDuty > Findings A malware scan on your S3 object EICAR-test-file.txt has detected a security risk EICAR-

Test-File (not a virus).

—— Findings (3) i
Findings Amalware scan on your nextwork-guardduty-project-cj-thesecurebucket- //EICAR-test-
file:txt has detected a security risk EICAR-Test-File (not virus).

EC2 malware scans SSCRELS

@ Investigate with Detect
Protection plans Saved rules

This finding is | Useful Not useful
53 Protection

EKS Protection Q Overview
Extended Threat Detection New — Finding ID

Runtime Monitoring Current ¥ Type Object:S3/MaliciousFile
Malware Protection for EC2 Severity HIGH
Malware Protection for 53 Region us-east-1

RDS Protection Count 1

Lambda Protection AccountID 464685491569

Resource ID dduty-project-cj-th ebucke

Createdat 07-05-2025 14:15:19 (a few seconds ago)
Accounts

Updatedat 07-05-2025 14:15:19 (a few seconds ago)
Usage

X

Terms Cookie preferen

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

Introducing Today's Project!

Tools and concepts

The services | used were AWS CloudFormation, EC2, S3, and GuardDuty with
Malware Protection enabled. Key concepts | learnt include how to deploy vulnerable
applications for security testing, how attackers can exploit insecure metadata services
and credentials, how GuardDuty uses machine learning and anomaly detection to
identify threats, and how to extend protection with malware scanning to detect and
respond to malicious files in S3 buckets.

Project reflection

This project took me approximately 2 hours to complete, including setting up the
insecure web app, carrying out the attacks, and verifying GuardDuty’s findings. The
most challenging part was crafting realistic attacks, like SQL injection and metadata
service exploitation, in a safe way that wouldn't cause damage beyond the demo. It
was most rewarding to see GuardDuty detect each suspicious activity automatically
and generate detailed findings, showing how useful Al-powered security tools can be
for protecting cloud environments.

placeholder

| did this project today to practice and demonstrate how AWS GuardDuty uses
machine learning and anomaly detection to catch real-world attacks on insecure cloud
resources. My goal was to see how common hacking techniques — like SQL injection,
command injection, and credential theft — can be detected automatically, and to
explore GuardDuty's Malware Protection for catching malicious files in S3.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

This project met my goals because it gave me hands-on experience with cloud threat
detection, taught me how attackers think, and showed me how to use AWS's security
tools to protect cloud environments more effectively

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

Project Setup

To set up for this project, | deployed a CloudFormation template that launches an
insecure web application — the OWASP Juice Shop. The three main components are
the web application infrastructure, an S3 bucket, and GuardDuty, which protects our
environment

The web app deployed is called the OWASP Juice Shop. To practice my GuardDuty
skills, I will use this intentionally insecure web application to generate suspicious
activities and see how GuardDuty detects and reports potential threats across the web
app infrastructure, the S3 bucket, and the overall AWS environment.

GuardDuty is an AWS threat detection service that uses machine learning to monitor
for malicious or unauthorized behavior in your AWS accounts and workloads. In this
project, it will protect our environment by analyzing activity from the insecure OWASP
Juice Shop web application, the S3 bucket, and other infrastructure to detect potential
attacks and suspicious actions.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student

& C OB
s Q

B

amazon.com/c

ALt

@lvec B M (@) Amazon QBusiness & 1AM Identity Center |8 AmazonQ [53

rmation

CloudFormation
Stacks

Stack details

@ View nested

Stacks
Infrastructure Composer - =
NextWork-GuardDuty-project-CJ
1aC generator

Hooks overview

Hooks

v Registry

Public extensior
Acti
Publisher

e Feedback

93| Key Management Service

Events (89)
Q
Timestamp

2025-07-05 10:04:52
UTC+0300

2025-07-05 10:04:51
UTC+0300

2025-07-
UTC+0300

2025-07-05 10:04:51
UTC+0300

2025-07-05 10:04:51
UTC+0300

2025-07-05 10:04:47
UTC+0300

4 0 @

Bl CloudFormation

Logical ID Status

TheVpc
IN_PROGRES
Detector

TheSecureBucket

TheGateway

2025, Amazon Web Services, Inc. or its affiliates.

arch e

nextwork.org

[

United States (N. Virginia) ¥ | C) ¥

Detailed status

X

Privacy Terms Cookie preferences

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

SQL Injection

The first attack | performed on the web app is SQL injection, which means
manipulating input fields to insert malicious SQL statements. For example, | used the
payload ' OR 1=1;-- in the username or password field. This works because OR 1=1
always evaluates to true, and -- comments out the rest of the query, tricking the
database into logging me in without valid credentials. SQL injection is a security risk
because it can let attackers bypass authentication, steal or alter data, and compromise
the entire application if input is not properly validated

My SQL injection attack involved using the payload ' OR 1=1;-- in the login input field.
This means | tricked the web application’s SQL query to always return true by adding
OR 1=1, which is always true, and -- to comment out the rest of the original query. This
forced the database to bypass the normal login checks and grant me unauthorized
access. This kind of attack is dangerous because it can expose sensitive data, allow
attackers to modify or delete records, and compromise the entire application if input
validation and query handling are not secure.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
@ NextWork Student nextwork.org

§ OWASP Juice Shop QA @acom @

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

Command Injection

Next, | used command injection, which is a technique that allows an attacker to
execute arbitrary system commands on a server through a vulnerable application. The
Juice Shop web app is vulnerable to this because it does not properly sanitize user
input, allowing me to inject system commands through a template injection payload.
By doing this, | was able to access the EC2 instance metadata service
(1169.254.169.254") to retrieve temporary IAM credentials. This exposes sensitive AWS
keys that could be used to access and control resources in the cloud environment.

To run command injection, | crafted a payload that uses Node.js to execute system
commands on the server: "js #
{global.process.mainModule.require('child_process').exec("'
CREDURL=http://169.254.169.254/latest/meta-data/iam/security-credentials/;
TOKEN="curl -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-
metadata-token-ttl-seconds: 21600""; CRED=$(curl -H "X-aws-ec2-metadata-token:
$TOKEN" -s $CREDURL | echo $CREDURL$(cat) | xargs -n1 curl -H "X-aws-ec2-
metadata-token: $TOKEN"); echo $CRED | json_pp >
frontend/dist/frontend/assets/public/credentials.json ')} " The script will contact the
EC2 instance metadata service to get a session token, use it to pull the IAM role’s
temporary security credentials, and then save those credentials to a public JSON file
inside the web app. This demonstrates how a vulnerable server can be forced to leak
sensitive AWS secrets through command injection.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student

User Profile

_/

v

[object Object]

File Upload

No file selected.
Upload Picture

or

Image URL:

Link Image

Username:

#{global process.mainModule.require("child

Set Username

nextwork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

'y Chrispinus Jacob
' NextWork Student nextwork.org

Attack Verification

To verify the attack’s success, | checked the output file where the stolen credentials
were saved. The credentials page showed me the IAM role's temporary access key,
secret key, and session token retrieved from the EC2 instance metadata service. This
confirmed that the command injection worked and that | could now use these
credentials to access AWS resources from outside the web server.

QO B nhtips//d29e9cttyye2m.cloudfront.net/assets/public/credentials

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

Using CloudShell for Advanced Attacks

The attack continues in CloudShell, because | can use the stolen IAM credentials to
configure the AWS CLI and interact with the developer's AWS environment directly
from a secure command-line interface. By doing this, | can list S3 buckets, view their
contents, and download sensitive data — proving how an attacker can pivot from
exploiting a vulnerable web app to compromising cloud storage.

In CloudShell, I used ‘'wget’ to download the ‘credentials.json’ file that | saved on the
vulnerable web app. Next, | ran a command using ‘cat’ and 'jqg’ to extract the AWS
access key, secret key, and session token from the JSON file so | could configure the
AWS CLI and use the stolen credentials to access S3 buckets.

| then set up a profile called stolen to store and save all of the stolen credentials. We
had to create a new profile because the hacker doesn't inherently have access to the
victim's AWS environment — they need to use the stolen credentials through this
profile to run commands. We then set up the new profile using the stolen access key,
secret key, and session token.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

B CloudShell (Actions v) [2 @

et-information. xt to -/secret-infornation. txt

ur private informationt

Feedback ©2025, Amazon V Inc.or its affiliates. Privacy Terms Cookie preferences

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

GuardDuty's Findings

After performing the attack, | saw that GuardDuty reported a finding within a 15
minutes. Findings are detailed security alerts that show me exactly what suspicious or
malicious activity was detected, which resources were affected, and how severe the
threat is. This helps me understand how GuardDuty works and how |, as the engineer,
can respond to attacks in my AWS environment.

GuardDuty's finding was called
UnauthorizedAccess\:IAMUser/InstanceCredentialExfiltration, which means it
detected that temporary security credentials from an EC2 instance were accessed in
an unusual or suspicious way, indicating possible credential theft. Anomaly detection
was used because GuardDuty continuously analyzes AWS CloudTrail logs and
network activity to spot patterns that deviate from normal behavior — like unexpected
calls to the instance metadata service or unusual S3 data access — which helps
identify threats that might otherwise go unnoticed.

GuardDuty's detailed finding reported that the IAM instance role credentials were
accessed in a suspicious way from an IP address that didn't match the usual activity
for this environment. It showed exactly which API calls were made using the stolen
credentials, such as listing S3 buckets and downloading data. This confirmed that the
attacker was able to escalate from exploiting the web app to accessing the broader
AWS environment, highlighting the importance of monitoring for unusual credential
use.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

Blec2 @ vec B 1AM @ Amazon QBusiness @) 1AM Identity Center |@) AmazonQ | S3 93] Key Management Service B9l CloudFormation §] GuardDuty

GuardDuty X ardDuty Findings

e Findings (2) .
S Saved rules Status Threat type

EC2 malware scans Current ¥ | | All findings ¥

Severity v Finding type Resource
Protection plans

3 Protection Policy:IAMUser/ Access Key:
RootCredentialUsa ASIAWYMLIAVY2
ge [N

EKS Protection

Extended Threat Detection
53 Bucket:
nextwork-
quardduty-

Runtime Monitoring UnauthorizedAcce

Malware Protection for EC2 ¥ ssi1AMUser/
InstanceCredential

Malware Protection for S3 v rere used from a remof e project-cj-

thesecurebucket-
wo2dfdedtigy

RDS Protection AWS

Lambda Protection

Accounts.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

Extra: Malware Protection

For my project extension, | enabled Malware Protection in GuardDuty to add an extra
layer of security to my AWS environment. Malware is malicious software designed to
damage, disrupt, or gain unauthorized access to systems and data. By enabling this

feature, | can automatically detect if known or suspicious malware is uploaded to my
S3 buckets, helping me respond quickly to threats and strengthen my cloud security
posture.

To test Malware Protection, | uploaded a harmless test malware file — like the EICAR
test file — to my S3 bucket. The uploaded file won't actually cause damage because
it's a safe, industry-standard file used to test antivirus and malware detection systems
without containing any real malicious code. This lets me safely verify that GuardDuty
can detect malware and generate a finding when suspicious files appear in my
storage.

Once | uploaded the file, GuardDuty instantly triggered a malware finding, alerting me
that a suspicious file was detected in my S3 bucket. This verified that Malware
Protection is working correctly and that GuardDuty can automatically identify and
report malicious files, helping me respond quickly to potential threats in my cloud
environment.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

aws + ® Q (0] o United States (N. Virginia) ¥

Blecc @ vec B 1AM [@) Amazon QBusiness @) 1AM Identity Center [@) AmazonQ & 53 5] Key Management Service B3l CloudFormation & Guardduty

GuardDuty X ardDL Findings A malware scan on your S3 object EICAR-test-file.txt has detected a security risk EICAR-
Test-File (not a virus).
Summa fvTH First seen a few seconds ago, last seen a few seconds age
HITITE) Findings (3) .
Finding A malware scan on your S3 object arn:aws:s3::nextwork-guardduty-project-cj-thesecurebucket-w92df4e4t1gy/EICAR-test-

EC2 malware scans file:txt has detected a security risk EICAR-Test-File (not a virus).

Protection plans e This finding is | Useful Not useful
S3 Protection
EKS Protection Overview

Extended Threat Detection N Finding ID

Status Threat type
Runtime Monitoring Current ¥ | | All findings ¥ Ty Object:53/MaliciousFile
Malware Protection for EC2 1 Severity HIGH

Malware Protection for S3 Region us-east-1

RDS Protection Count

Lambda Protection Account ID 464685491569

esource D nextwork-guardduty-proje

Createdat 07-05-2025 14:15:19 (a few seconds ago)

Accounts
Updatedat 07-05-2025 14:15:19 (a few seconds ago)

Usage

X

Feedback ervices, Inc. a Privacy Terms Cookie preferences

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

