
nextwork.org

Secure Secrets
with Secrets
Manager

Chrispinus Jacob

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Chrispinus Jacob

NextWork Student nextwork.org

Introducing Today's Project!

In this project, I will demonstrate how to use AWS Secrets Manager for secure project

management. I'm doing this project to learn how to protect credentials and sensitive

configuration data when connecting a live (production) application to an AWS

environment and its database. By using AWS Secrets Manager, I want to securely

store, manage, and rotate secrets such as database passwords, API keys, and other

confidential information instead of hardcoding them in the application code. This

approach helps improve security and follows best practices for deploying secure

applications in the cloud.

Tools and concepts

Services I used were AWS Secrets Manager, AWS IAM, Git, and GitHub. Key concepts

I learnt include secure credential management using Secrets Manager, the importance

of avoiding hardcoded secrets in code, how GitHub automatically detects exposed

credentials, and how to resolve merge conflicts and rebase branches to maintain a

clean commit history.

Project reflection

This project took me approximately 1 hours to complete. The most challenging part

was handling the merge conflicts during the rebase and making sure no sensitive

credentials were left behind in the commit history. It was most rewarding to see the

app working securely with AWS Secrets Manager, knowing that I had improved both

the functionality and security of the project.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Chrispinus Jacob

NextWork Student nextwork.org

I did this project today to deepen my understanding of secure credential management

and to gain hands-on experience with AWS Secrets Manager, Git, and GitHub

workflows. Yes, this project met my goals — I successfully replaced hardcoded

credentials with a secure solution, practiced using version control effectively, and

learned how security tools like GitHub secret scanning work in real time. It was a

practical and valuable learning experience.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Chrispinus Jacob

NextWork Student nextwork.org

Hardcoding credentials

In this project, a sample web app is exposing AWS credentials in its source code. It is

unsafe to hardcode credentials because anyone with access to the code repository

can see and misuse those secrets, which can lead to unauthorized access, data

breaches, or unexpected costs. This step highlights why it is important to use a secure

solution like AWS Secrets Manager to store and manage sensitive information instead

of embedding it directly in the code.

In this project, a sample web app is exposing AWS credentials in its source code. It is

unsafe to hardcode credentials because anyone with access to the code repository

can see and misuse those secrets, which can lead to unauthorized access, data

breaches, or unexpected costs. This step highlights why it is important to use a secure

solution like AWS Secrets Manager to store and manage sensitive information instead

of embedding it directly in the code.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Chrispinus Jacob

NextWork Student nextwork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Chrispinus Jacob

NextWork Student nextwork.org

Using my own AWS credentials

As an extension for this project, I also decided to run the app locally to test how it

connects securely to AWS Secrets Manager. To set up my virtual environment, I

installed Python, created a virtual environment using `venv`, and installed the required

packages using `pip`. This setup helps me safely test the code and manage

dependencies without affecting my global system.

When I first ran the app, I ran into an error because some of the required packages

were missing and the hardcoded credentials were either invalid or not configured

properly. This showed me how fragile it is to rely on hardcoded secrets and

highlighted the importance of setting up the environment correctly and using a secure

way to manage credentials like AWS Secrets Manager.

To resolve the 'InvalidAccessKeyId' error, I updated the config file to use our account

access ID and secret—no more test credentials.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Chrispinus Jacob

NextWork Student nextwork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Chrispinus Jacob

NextWork Student nextwork.org

Pushing Insecure Code to GitHub

Once I updated the web app code with credentials, I forked the repository because I

wanted to create my own copy of the original project on GitHub to experiment safely.

A fork is different from a clone — while a clone creates a local copy on your machine,

a fork lives on GitHub under your own account, allowing you to make changes without

affecting the original project. This setup lets me push code, including the hardcoded

credentials, to see how GitHub handles exposed secrets in a public or private repo.

To connect my local repository to the forked repository, I added the forked repo as a

remote using `git remote add origin <forked-repo-URL>`. Then I used `git add` and `git

commit` to stage and save my changes, including the hardcoded credentials. Finally,

`git push` uploads those committed changes to the forked repository on GitHub.

GitHub blocked my push because it detected hardcoded AWS credentials in the code.

This is a good security feature because it helps prevent accidental exposure of

sensitive information, like API keys and secrets, which could be exploited if accessed

by unauthorized users.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Chrispinus Jacob

NextWork Student nextwork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Chrispinus Jacob

NextWork Student nextwork.org

Secrets Manager

Secrets Manager is a secure AWS service for storing and managing sensitive

information like API keys, passwords, and tokens. I'm using it to store my AWS access

key ID and secret access key, so they’re no longer hardcoded in my application. Other

common use cases include storing database credentials, OAuth tokens, third-party

service API keys, and any other configuration secrets that need to be kept safe and

accessed programmatically.

Another feature in Secrets Manager is automatic rotation, which means your secrets

(like API keys or database credentials) can be updated on a schedule without requiring

manual intervention. It's useful in situations where security policies require regular

credential changes, or when you want to reduce the risk of long-lived secrets being

exposed or misused.

Secrets Manager provides sample code in various languages, like Python, JavaScript,

and Java. This is helpful because it allows developers to quickly integrate secret

retrieval into their applications without having to write everything from scratch,

ensuring secure access to sensitive data with minimal effort.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Chrispinus Jacob

NextWork Student nextwork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Chrispinus Jacob

NextWork Student nextwork.org

Updating the web app code

I updated the `config.py` file to retrieve AWS credentials securely from AWS Secrets

Manager. The `get_secret()` function will connect to Secrets Manager, fetch the stored

secret (like access key ID and secret access key), and return it for use in the

application—eliminating the need to hardcode sensitive information in the codebase.

I also added code to `config.py` to extract specific values like the access key ID and

secret access key from the retrieved secret JSON. This is important because it allows

the application to use only the necessary parts of the secret in a clean and controlled

way, reducing the risk of mishandling sensitive data.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Chrispinus Jacob

NextWork Student nextwork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Chrispinus Jacob

NextWork Student nextwork.org

Rebasing the repository

Git rebasing is a way to rewrite commit history by moving or combining a sequence of

commits to a new base commit. I used it to clean up my feature branch before

merging it with the main branch. This was necessary because it helped create a linear,

easy-to-follow commit history and removed any unnecessary merge commits or

conflicts.

A merge conflict occurred during rebasing because changes in my branch overlapped

with changes in the main branch, specifically in the same lines of code. I resolved the

merge conflict by manually editing the conflicting files to keep the correct versions of

the code, then staged the changes with `git add` and continued the rebase using `git

rebase --continue`.

Once the merge conflict was resolved, I verified that my hardcoded credentials were

out of sight in the repository by checking the final committed files with `git diff` and `git

log` to ensure no sensitive data remained. I also searched the codebase using

keywords like `AWS_SECRET_ACCESS_KEY` and `AKIA` to confirm that no credentials

were accidentally pushed. Finally, I reviewed the repository on GitHub to make sure

the secrets were not visible in any commit history or code files.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Chrispinus Jacob

NextWork Student nextwork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


nextwork.org

The place to learn &
showcase your skills
Check out nextwork.org for more projects

https://community.nextwork.org/c/i-have-a-question?automatic_login=true
https://community.nextwork.org/c/i-have-a-question?automatic_login=true

