nextwork.org

Secure Secrets
with Secrets
Manager

&8 Raw (0 &

boto3

botocore. exceptions

secret_name

region_name

session = boto3
client - session
service_name='secretsmanager’,

region_name=region_name

response = client =secret_name)

secret = response[‘SecretStrin

(secret)

credentials =

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

Introducing Today's Project!

In this project, | will demonstrate how to use AWS Secrets Manager for secure project
management. I'm doing this project to learn how to protect credentials and sensitive
configuration data when connecting a live (production) application to an AWS
environment and its database. By using AWS Secrets Manager, | want to securely
store, manage, and rotate secrets such as database passwords, API keys, and other
confidential information instead of hardcoding them in the application code. This
approach helps improve security and follows best practices for deploying secure
applications in the cloud.

Tools and concepts

Services | used were AWS Secrets Manager, AWS IAM, Git, and GitHub. Key concepts
| learnt include secure credential management using Secrets Manager, the importance
of avoiding hardcoded secrets in code, how GitHub automatically detects exposed
credentials, and how to resolve merge conflicts and rebase branches to maintain a
clean commit history.

Project reflection

This project took me approximately 1 hours to complete. The most challenging part
was handling the merge conflicts during the rebase and making sure no sensitive
credentials were left behind in the commit history. It was most rewarding to see the
app working securely with AWS Secrets Manager, knowing that | had improved both
the functionality and security of the project.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

| did this project today to deepen my understanding of secure credential management
and to gain hands-on experience with AWS Secrets Manager, Git, and GitHub
workflows. Yes, this project met my goals — | successfully replaced hardcoded
credentials with a secure solution, practiced using version control effectively, and
learned how security tools like GitHub secret scanning work in real time. It was a
practical and valuable learning experience.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

Hardcoding credentials

In this project, a sample web app is exposing AWS credentials in its source code. It is
unsafe to hardcode credentials because anyone with access to the code repository
can see and misuse those secrets, which can lead to unauthorized access, data
breaches, or unexpected costs. This step highlights why it is important to use a secure
solution like AWS Secrets Manager to store and manage sensitive information instead
of embedding it directly in the code.

In this project, a sample web app is exposing AWS credentials in its source code. It is
unsafe to hardcode credentials because anyone with access to the code repository
can see and misuse those secrets, which can lead to unauthorized access, data
breaches, or unexpected costs. This step highlights why it is important to use a secure
solution like AWS Secrets Manager to store and manage sensitive information instead
of embedding it directly in the code.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

AWS_ACCESS_KEY_ID - "AKTAW3MEFRAFTQMSFHKE™
AWS_SECRET_ACCESS_KEY - "F@b8s5m+p0ZsttvBCirr1B0utuvCpgXMi2Y1gaxY”
east-

PROBLEMS ~ OUTPUT ~ DEBUGCONSOLE TERMINAL ~ PORTS CODEREFERENCELOG

Users\ADMIN\Desktop\Nextwork\nextwork-security-secretsmanager> [|

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

Using my own AWS credentials

As an extension for this project, | also decided to run the app locally to test how it
connects securely to AWS Secrets Manager. To set up my virtual environment, |
installed Python, created a virtual environment using ‘venv', and installed the required
packages using pip . This setup helps me safely test the code and manage
dependencies without affecting my global system.

When [first ran the app, | ran into an error because some of the required packages
were missing and the hardcoded credentials were either invalid or not configured
properly. This showed me how fragile it is to rely on hardcoded secrets and
highlighted the importance of setting up the environment correctly and using a secure
way to manage credentials like AWS Secrets Manager.

To resolve the 'InvalidAccessKeyld' error, | updated the config file to use our account
access ID and secret—no more test credentials.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

¥ buckets:

e:

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

Pushing Insecure Code to GitHub

Once | updated the web app code with credentials, | forked the repository because |
wanted to create my own copy of the original project on GitHub to experiment safely.
A fork is different from a clone — while a clone creates a local copy on your machine,
a fork lives on GitHub under your own account, allowing you to make changes without
affecting the original project. This setup lets me push code, including the hardcoded
credentials, to see how GitHub handles exposed secrets in a public or private repo.

To connect my local repository to the forked repository, | added the forked repo as a
remote using "git remote add origin <forked-repo-URL>". Then | used "git add" and "git
commit’ to stage and save my changes, including the hardcoded credentials. Finally,
‘git push’ uploads those committed changes to the forked repository on GitHub.

GitHub blocked my push because it detected hardcoded AWS credentials in the code.
This is a good security feature because it helps prevent accidental exposure of
sensitive information, like API keys and secrets, which could be exploited if accessed
by unauthorized users.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

remote: - Push cannot contain secrets
remote:
remote:
remote: (?) Learn how to resolve a blocked push
remote: h //docs.github.com/code-security/secret-scanning/working-with-secret-scanning-and-push-protection/working-with-push-protectio
n-from-the- line#tresolving-a-bl h
remote:
remote:
remote: —— Amazon AWS Access Key ID ——
remote:
remote:
remote:
remote:
remote: push, remove sec ommit(s) or follow this URL to allow the secret.
thul / nextwork-security-secretsmanager/security/secret-scanning/unblock-secret/2zYMEVETSNHYTUSTRZES

remote:

remote:

remote:

remote:

remote: ommit: 38724871df7f471532c8a6208 6140d3e8

remote: ath: config.py:4

remote:

remote; ?) To push, remove secret from commit(s) o ollow this URL to allow the secret.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

Secrets Manager

Secrets Manager is a secure AWS service for storing and managing sensitive
information like API keys, passwords, and tokens. I'm using it to store my AWS access
key ID and secret access key, so they're no longer hardcoded in my application. Other
common use cases include storing database credentials, OAuth tokens, third-party
service APl keys, and any other configuration secrets that need to be kept safe and
accessed programmatically.

Another feature in Secrets Manager is automatic rotation, which means your secrets
(like API keys or database credentials) can be updated on a schedule without requiring
manual intervention. It's useful in situations where security policies require regular
credential changes, or when you want to reduce the risk of long-lived secrets being
exposed or misused.

Secrets Manager provides sample code in various languages, like Python, JavaScript,
and Java. This is helpful because it allows developers to quickly integrate secret
retrieval into their applications without having to write everything from scratch,
ensuring secure access to sensitive data with minimal effort.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

Sample code
ese code samples to ret t in your application.

JavaScript Python3 Ruby Go

U NP TCATG GG SOmpIT CUW VSIS D aut

https://aws.amazon.com/developer/language/python/
import boto3

from botocore.exceptions import ClientError

def get secret():

secret_name ws-access-key"
region_name us-east-1"

Create a Secrets Manager client
session = boto3.session.Session()
client = session.client(

19 caruira nama-'carratcmanagan’

Python Line 1, Column 1

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

Updating the web app code

| updated the ‘config.py file to retrieve AWS credentials securely from AWS Secrets
Manager. The ‘get_secret()’ function will connect to Secrets Manager, fetch the stored
secret (like access key ID and secret access key), and return it for use in the
application—eliminating the need to hardcode sensitive information in the codebase.

| also added code to ‘config.py’ to extract specific values like the access key ID and
secret access key from the retrieved secret JSON. This is important because it allows
the application to use only the necessary parts of the secret in a clean and controlled
way, reducing the risk of mishandling sensitive data.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student

nextwork.org

boto3
botocore. exceptions clientError
Jjson

get_secret():

secret_name - "aws-access-key"
region_name - “"us-east-1"

session - boto3.session.s
client = session. (
rvice e-'secretsmanager’,

)

ClientError

secret = get secret_value response['SecretString"]

Json. 1

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student nextwork.org

Rebasing the repository

Git rebasing is a way to rewrite commit history by moving or combining a sequence of
commits to a new base commit. | used it to clean up my feature branch before
merging it with the main branch. This was necessary because it helped create a linear,
easy-to-follow commit history and removed any unnecessary merge commits or
conflicts.

A merge conflict occurred during rebasing because changes in my branch overlapped
with changes in the main branch, specifically in the same lines of code. | resolved the
merge conflict by manually editing the conflicting files to keep the correct versions of
the code, then staged the changes with "git add™ and continued the rebase using "git
rebase --continue'.

Once the merge conflict was resolved, | verified that my hardcoded credentials were
out of sight in the repository by checking the final committed files with “qgit diff* and “qgit
log’ to ensure no sensitive data remained. | also searched the codebase using
keywords like 'AWS_SECRET_ACCESS_KEY" and "AKIA’ to confirm that no credentials
were accidentally pushed. Finally, | reviewed the repository on GitHub to make sure
the secrets were not visible in any commit history or code files.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

Chrispinus Jacob
NextWork Student

nextwork.org

boto3
botocore. exceptions clientError
Jjson

get_secret():

secret_name - "aws-access-key"
region_name - “"us-east-1"

session - boto3.session.s
client = session. (
rvice e-'secretsmanager’,

)

ClientError

secret = get secret_value response['SecretString"]

Json. 1

https://community.nextwork.org/c/i-have-a-question?automatic_login=true

nextwork.org

The place to learn &
showcase your skKills

Check out nextwork.org for more projects

https://community.nextwork.org/c/i-have-a-question?automatic_login=true
https://community.nextwork.org/c/i-have-a-question?automatic_login=true

